

Helical Engine

David Burns Manager, Science and Technology Office Marshall Space Flight Center

- What and Why
- Thought Experiment
- Ions and Particle Accelerators
- Classical vs Relativistic Dynamics
- Helical Engine Architecture
- A Specific Design Example
- Conservation of Momentum
- Conclusions

- An attempt to define an in-space propulsion engine that does not expend propellant
 - Applications include satellite station keeping and interstellar travel
- Goal is to use proven physics and technology
 - Focus on extreme duration
 - Current state-of-the-art is not sufficient, but has potential to scale
- "Conservation of Momentum" for concept is not well understood
 - Several paths exist for momentum conservation

Thought Experiment 1/2

Thought Experiment 2/2

Ions and Particle Accelerators

• Replace weight with a rotating ring of ions

Science & Technology

Office

- Goal is to increase difference in momentum between top and bottom collisions
- Hold Z-axis velocity constant and increase absolute ion velocity
- Momentum not a linear function at relativistic velocities

- Moving a rotating ring creates a helix
- Keep velocity constant on z-axis
- F=ma, and a=0
- Increase overall velocity by increasing velocity on y and z axes
- Increases momentum without changing z-axis velocity or applying a force aligned with z-axis

	Classical	Relativistic	Definitions	
Momentum	$\rho = mv$	$ ho = \gamma m v$ using $\gamma = rac{1}{\sqrt{1 - rac{v^2}{c^2}}}$	<i>a</i> Acceleration<i>F</i> Force	
Force	$F=rac{d ho}{dt}$	$F = \frac{d\rho^*}{dt}$ * Must account for direction of travel	<i>KE</i> Kinetic Energyγ Lorentz Factor	
Force	F = ma	$F_{II} = \gamma^3 ma$ Parallel $F_{\perp} = \gamma ma$ Perpendicular	 <i>ρ</i> Momentum <i>m</i> Resting Mass <i>c</i> Speed of Light 	
Kinetic Energy	$KE = \frac{1}{2}mv^2$	$KE = mc^2[\gamma - 1]$	t Time v Velocity	

Helical Engine Architecture

Beam Guide		Simulation Output			
Beam Diameter	5 <i>mm</i>	Minimum Velocity	99.0 <i>%c</i>	Thrust (z-axis)	
lon Type	Alpha (He++)	Y Calculated using Table 1	7.0888	Accelerator	-1.313 x 10 ⁻⁸ N
Ion Pressure	10 ⁻¹¹ atm	Maximum Velocity	99.05 <i>%c</i>	Top Bend	+42.42 N
Total Round Trip Length	309.6 m	Y Calculated using Table 1	7.2594	Decelerator	-2.929 x 10 ⁻⁸ N
Total Volume	6079 cm ³	Average Velocity	99.023 <i>%c</i>	Bottom Bend	-41.42 N
Outer Core Radius		Ion Cycle Time	1043 ns	Total Thrust	0.9972 N
Minimum	3.5 m	Total Number of Ions in Beam Guide	1.624 x 10 ¹²		0.224 lbf
Maximum	3.514 m	Ion Lifetime	10 hours	Total Torque	1.226 x 10 ⁻³ <i>N</i> ⋅ <i>m</i>
Inner Core Radius		Ion Mass Expended Each Year	9.53 x 10 ⁻¹² kg	Power	
Minimum	3.25 m	Maximum Magnetic Field	13.79 <i>T</i>	Accelerator Power	160 MW
Maximum	3.265 m	Average Magnetic Field	13.16 T	Decelerator Power*	-160 MW
Z-axis Roll-Out Angle	70°	Average X-Ray Emissions	5.02 x 10 ⁻¹¹ W	* Decelerator generates power	
Samples in Simulation	1,320,000				RMTM Version: 2.4

Force and System Velocity Predictions

	Helical Engine Example	Large Hadron Collider	
Length	0.577 <i>km</i>	27 km	
Peak Magnetic Field	7.2 T	8.3 T	
Max Velocity	99.05 %c	99.9999991 %c	
Lorentz Factor	7.26	7454	
Total lons	1.6 x 10 ¹²	3.4 x 10 ¹⁴	
Power	165 <i>MW</i>	120 <i>MW</i>	

- Different purposes similar technology.
- Helical Engine does not include LHC detectors and instrumentation

Z-Axis and Absolute Velocity

- Hypothesis: "IF engine continues to accelerate, THEN engine's momentum continues to increase."
 - How is momentum conserved?
- Conservation within engine "system"
 - Ion spin
 - Power generation
 - Other momentum storage or offset
- Conservation at the global level
 - Emissions to surrounding environment (thermal, x-rays, fields)
 - Gravity waves (works for Neutron Stars...)

	$\rho = \gamma m v$	
--	---------------------	--

- Megawatts of power + space-rated synchrotron = 1 *N* of thrust
 - Not a compelling reason to build this engine
- However
 - Equivalent Specific Impulse > 10¹⁷
 - "Net" power less than 10 watts
 - Options for increasing thrust and efficiency
 - Technology is extension of space flown hardware
 - Many technical challenges ahead
- Basic concept is unproven
 - Has not been reviewed by subject matter experts
 - Math errors may exist!